MATH 579 Exam 6 Solutions

Part I: Let p, q be n-permutations of the same type (i.e. the same number of cycles of each length). Prove that there is some n-permutation r such that $p=r q r^{-1}$. For example, with $p=(1532)(46), q=(1234)(56)$, we can take $r=(254)$, and $(1532)(46)=(254)(1234)(56)(452)$.

Put p, q into partition form and read off the numbers in order; p is $p_{1}, p_{2}, \ldots, p_{n}$ with parentheses inserted in various places; similarly q is $q_{1}, q_{2}, \ldots q_{n}$. [In the example $p_{1}=1, p_{2}=5, p_{3}=3, p_{4}=$ $\left.2, p_{5}=4, p_{6}=6\right]$. Define r via $r\left(q_{i}\right)=p_{i}$; hence $r^{-1}\left(p_{i}\right)=q_{i}$. Let $p_{i} \in[n]$. The proof splits into two cases; if p_{i} is not at the end of a cycle in p, then $p\left(p_{i}\right)=p_{i+1}$. Because p, q have the same type $q\left(q_{i}\right)=q_{i+1}$. Now $\operatorname{rqr}^{-1}\left(p_{i}\right)=r q\left(q_{i}\right)=r\left(q_{i+1}\right)=p_{i+1}=p\left(p_{i}\right)$. Alternatively, if p_{i} is at the end of a cycle in p, then $p\left(p_{i}\right)=p_{j}$, for some $j<i$, but also $q\left(q_{i}\right)=q_{j}$. So, $r q r^{-1}\left(p_{i}\right)=r q\left(q_{i}\right)=r\left(q_{j}\right)=p_{j}=p\left(p_{i}\right)$. Hence, p and $r q r^{-1}$ agree on each element of $[n]$ and are equal.
Part II:

1. How many permutations $p \in S_{4}$ satisfy $p^{2}=1$?

Such a permutation must have all cycles of length either 2 or 1 (length must divide 2). Hence, either two two-cycles, one two-cycle and two fixed points, or four fixed points. There are $\frac{4!}{2^{2} 2!}=3, \frac{4!}{1^{2} 2^{1} 2!1!}=6, \frac{4!}{1^{4} 4!}=1$ types, respectively. Hence, altogether there are 10. Alternatively, one may list them: $(12)(34),(13)(24),(14)(23),(12),(13),(14),(23),(24),(34), 1$.
2. A permutation p is called an involution if $p^{2}=1$. Prove that for $n>1$, the number of involutions in S_{n} is even.

There are n ! permutations altogether, which is even for $n>1$. We take away the noninvolutions and leave only involutions. We now prove that there are an even number of non-involutions, which solves the problem because the difference between two even numbers is even. Every non-involution p may be paired off with its inverse p^{-1}. If they were the same, then $1=p p^{-1}=p^{2}$, so p would be an involution, but p was a non-involution. Hence each pair contains two distinct permutations.
3. Let n be even. Prove that $c(n, n / 2) \geq \frac{n!}{2^{n / 2}(n / 2)!}$.
$c(n, n / 2)$ counts the number of permutations of $[n]$ with exactly $n / 2$ cycles. By Thm. 6.9, $\frac{n!}{2^{n / 2}(n / 2)!}$ counts the number of permutations of $[n]$ with exactly $n / 2$ cycles, each of length 2 ; this is a subset of what is being counted by $c(n, n / 2)$; in fact for $n>2$ it is a proper subset.
4. Let $n \geq 3$. How many n-permutations have $1,2,3$ in the same cycle?

The question does not depend on the specific identities of $1,2,3$; so without loss we consider $n, n-1, n-2$ instead. Consider the Bona form of an n-permutation. $n, n-1, n-2$ are in the same cycle precisely when n comes before both $n-1, n-2$. Just one-third of all n ! permutations have this property.
5. Let $n \geq 3$. How many n-permutations have 1 in the same cycle with either 2 or 3 , but not both?

As in the previous problem, we consider instead $n, n-1, n-2$ and use Bona form. n is in the same cycle with either $n-1$ or $n-2$ precisely when n comes between them, i.e. $\ldots, n-1, \ldots, n, \ldots, n-2, \ldots$ or $\ldots, n-2, \ldots, n, \ldots, n-1, \ldots$. Hence again one-third of all n ! permutations have this property.

Exam grades: High score $=104$, Median score $=76$, Low score $=54$

